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Classical Leray–Hirsch Theorem in topology:
Let V → S be a rank r + 1 complex vector bundle,
X = PS(V)

p−→ S be the induced Pr bundle. Then

H(X) ∼= p∗H(S)[h]/fV(h)

as a ring isomorphism. Here h = c1(OX(1)) and

fV(h) = cr+1(OX(1))⊗ p∗V) = hr+1 + c1(V)hr + · · ·+ cr+1(V).

The fact fV(h) = 0 in H(X) follows from

0→ OX(−1)→ p∗V → Q→ 0.
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How about QH(X)? (For X smooth projective.)

Let ei : Mg,n(X, β)→ X be the evaluation maps. For
t = ∑ tµTµ ∈ H ≡ H(X), the Gromov–Witten potential

FX
g (t) = ∑

n,β

qβ

n!
〈tn〉Xg,n,β = ∑

n≥0, β∈NE(X)

qβ

n!

∫
[Mg,n(X,β)]vir

n

∏
i=1

e∗i t

is a formal function in tµ and qβ, with β ∈ NE(X), the Mori
cone. Let gµν = 〈Tµ, Tν〉 and Tµ = ∑ gµνTν,

Tµ ∗t Tν = ∑
κ

∂3FX
0

∂tµ∂tν∂tκ
(t)Tκ

= ∑
κ, n≥0, β∈NE(X)

qβ

n!
〈Tµ, Tν, Tκ, tn〉X0,n+3,βTκ.
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The WDVV equations imply that ∗t is a family of associative
products on H parameterized by t ∈ H.
Equivalently, a family (in z ∈ C×) of flat Dubrovin connections

∇z = d− 1
z ∑

µ

dtµ ⊗ Tµ∗t

on the trivial tangent bundle TH = H×H.
Goal of Quantum L–R: Describe QH(X) using D modules:

QH(X) ” ∼= ” p∗QH(S)[ĥ]/f̂V(h)

with p∗ and quantization •̂ suitably defined:

f̂V(h) ” = ” ĥr+1 + ĉ1(V)ĥr + · · ·+ ̂cr+1(V)?
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A baby example: X = Pr (S = {pt.})

Let ` = [P1] be the line class. Then the small quantum
cohomology ring, i.e. t = 0, is

QHsmall(Pr) ∼= C[ĥ]/(ĥr+1 − q`).

Here D = t1h ∈ H2(Pr), ĥ = z∂h = z∂t1 and the Dz module has
basis 1, ĥ, · · · , ĥr with Picard-Fuchs equation

�` = (z∂h)
r+1 − q` = 0.

Such type of formula holds for (semi-Fano) toric manifolds
(Lian-Liu-Yau, Givental, and Guest, Iritani for D module
formulation) with the PF equation being replaced by the GKZ
(Gelfand-Kapranov-Zelevinsky) system, and with certain
mirror transformations.
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A general framework to determine g = 0 GW invariants:

I (localization data) =⇒ J.

Let τ = ∑µ τµTµ ∈ H. J is the H-valued function:

JX(τ, z−1) = 1+
τ

z
+ ∑

β∈NE(X),n,µ

qβ

n!
Tµ

〈
Tµ

z(z− ψ)
, τ, · · · , τ

〉
0,n+1,β

.

The variable z is responsible for the weight of C× action on he
domain curve which keeps track on the degree of the ψ = ψ1
class. (Here ψi = c1(Li) with Li = σ∗i ωC /M .)

Witten’s DE + SE + TRR (dilaton, string, topological recursion
relation) in 2D gravity⇔ Givental’s symplectic reformulation.
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LetH := H[z, z−1]],H+ := H[z] andH− := z−1H[[z−1]]. Then
H ∼= T∗H+ is naturally a symplectic space (formal loops).

Let F0(t) be the generating function of all descendent
invariants, where

t = ∑ tµ
k zkTµ ∈ H+.

The one form dF0 gives a section of π : H → H+.

Givental’s Lagrangian cone at t = 0 is

L = graph of dF0 (DE =⇒ cone)

with −zJ(τ,−z−1) a partial section over −z1 + H.

Let R = ̂C[NE(X)] and a = ∑ qβaβ(z) ∈ R{z} if aβ(z) ∈ C[z].
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Lemma (Givental)
z∇J = (z∂µJν) forms a matrix whose column vectors z∂µJ(τ)
generates the tangent space Lτ of L as an R{z}-module.

In fact, TRR =⇒ z∇J is the fundamental solution matrix of ∇z,
i.e. we have the quantum differential equation (QDE)

z∂µ z∂νJ = ∑ C̃κ
µν(τ, q) z∂κJ,

where
Tµ ∗τ Tν = ∑ C̃κ

µν Tκ.

That is,

QH(X) is a cyclic holonomic Dz module generated by J.

The rank is N = dim H, with

z∂µJ = Tµ + O(z−1).
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Let p̄ : X→ S be a smooth toric bundle with fiber divisor
D = ∑ tiDi. H(X) is a free over H(S) with finite generators
{De := ∏i Dei

i }e∈Λ. Let t̄ := ∑s t̄sT̄s ∈ H(S). H(X) has basis

{Te = T(s,e) = T̄sDe}e∈Λ+ .

Denote by ∂T̄s
≡ ∂t̄s the T̄s directional derivative on H(S),

∂e = ∂(s,e) := ∂t̄s ∏i ∂ei
ti , and the naive quantization

T̂e ≡ ∂ze ≡ ∂z(s,e) := z∂t̄s ∏i z∂ei
ti = z|e|+1∂(s,e).

The Te directional derivative on H(X) is ∂e = ∂Te .

∂ze (higher order) and z∂e (first order)

look different, but they are closely related.
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Let p̄ : X→ S be a split toric bundle quotient from

V =
⊕

Lρ → S.

The hypergeometric modification of JS by the p̄-fibration takes
the form

IX(t̄, D, z, z−1) := ∑
β∈NE(X)

qβe
D
z +(D.β)IX/S

β (z, z−1)JS
βS
(t̄, z−1),

where
IX/S
β = ∏

ρ∈41

1
(Dρ+Lρ).β

∏
m=1

(Dρ +Lρ + mz)

comes from fiber localization, and the product is directed in the
sense that it appears in the numerator when (Dρ +Lρ).β ≤ −1.

In general, IX is only an approximation of JX since positive z
powers may occur in IX.
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Also the approximation is valid only in some directions since I
is defined only on the thin subspace

t̂ := t̄ + D ∈ H(S)⊕
⊕

i
CDi ⊂ H(X).

Theorem (J. Brown 2009)
(−z)IX(t̂,−z) lies in the Lagrangian cone L.

Definition (GMT)
For each t̂, say zI(t̂) lies in Lτ of L. The correspondence

t̂ 7→ τ(t̂) ∈ H(X)⊗ R

is called the generalized mirror transformation.
So I = QJ for a first order operator Q. However, we need the
reverse direction to determine J from I, at least in some range:
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Theorem (BF/GMT, LLW)
(1) The GMT: τ = τ(t̂) satisfies τ(t̂, q = 0) = t̂.
(2) Under the basis {Te}e∈Λ+ , there exists an invertible N×N
matrix-valued formal series B(τ, z), the Birkhoff factorization, such
that (

∂zeI(t̂, z, z−1)
)
=
(

z∇J(τ, z−1)
)

B(τ, z),

where ∂zeI and z∂eJ are column vectors. The first column vectors are I
and J respectively (string equation).
(3) Both τ, B, and hence J are effectively computable from I. In fact

J(τ) = P(z)I(t̂)

for an inductively determined (in NE(S)) higher order operator P
which eliminates all positive z powers of the RHS. Finally,

τ(t̂) = z−1-coefficient of PI.
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Unfortunately, this does not provide any conceptual behavior
or analytic properties of τ, B or J in t̂ = t̄ + D.
In particular, this does not provide a solution to the Quantum
Leray–Hirsch problem as proposed.
Target problem: Consider an ordinary Pr flop

Z ⊂ X
ψ

%%

f // Z′ ⊂ X′
ψ′

yy
S ⊂ X̄

where we know
F = [Γ̄f ] ∈ A(X×X′)

gives H(X) ∼= H(X′) as groups and Hodge structures, but not
the cup product.
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Consider the local model with split bundle data (S, F, F′):

F =
r⊕

i=0

Li and F′ =
r⊕

i=0

L′i.

Then ψ̄ : Z = PS(F)→ S with

N = NZ/X = ψ̄∗F′ ⊗OZ(−1),

and
p̄ : X = PZ(N⊕O)

p−→Z
ψ̄−→ S

is a double projective bundle. Similarly for Z′, N′ and X”.
The flop is then

X = PZ(N⊕O) 99K X′ = PZ′(N′ ⊕O).
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Leray–Hirsch =⇒
for h, ξ being the relative hyperplane classes,

H(X) = H(S)[h, ξ]/(fF, fN⊕O),

where (notice the sign of h)

fF =
r

∏
i=0

ai := ∏(h + Li),

fN⊕O = br+1

r

∏
i=0

bi := ξ ∏(ξ−h + L′i).

F : H(X) ∼= H(X′) as groups is easy: for t̄ ∈ H(S),

F t̄hiξ j = t̄(Fh)i(F ξ)j = t̄(ξ ′ − h′)iξ ′j, i ≤ r.

(For j > 0 this trivially holds for all i.)
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Theorem (LLW-II 2010, split flop case, AG 2016)
F induces an isomorphism of quantum rings QH(X) ∼= QH(X′)
under analytic continuations in the Kähler moduli.

Let γ, ` be the fiber line classes in X→ Z→ S. Then

F γ = γ′ + `′,

but for the extremal rays:

F ` = −`′ 6∈ NE(X′),

so analytic continuations are necessary.

[Li–Ruan 2000] (r = 1, dim X = 3),
[LLW 2006] (simple Pr flop in any dimension, S = pt),
[LLW 2008] (simple flop, any g ≥ 0).
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Any β ∈ A1(X) is of the form

β = βS + d`+ d2γ

where βS ∈ A1(S) is identified with its canonical lift in A1(X)
with (βS.h) = 0 = (βS.ξ). h, ξ are dual to `, γ hence

β.h = d, β.ξ = d2.

To construct the Dz module QH(X):

Proposition (Picard–Fuchs system on X/S)
The fiber directions are handled by �`IX = 0 and �γIX = 0, where

�` = ∏r
j=0 z∂aj − q`et1

∏r
j=0 z∂bj , �γ = z∂ξ ∏r

j=0 z∂bj − qγet2
.

Moreover, we have F -invariance

F 〈�X
` ,�X

γ 〉 ∼= 〈�X′
`′ ,�X′

γ′ 〉.
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IX satisfies the two equations by a direct computation from

IX/S
β =

r

∏
i=0

1
β.ai

∏
m=1

(ai + mz)

r

∏
i=0

1
β.bi

∏
m=1

(bi + mz)

1
β.ξ
∏

m=1
(ξ + mz)

.

The F -invariance of Picard-Fuchs ideals: Since

F aj = F (h + Li) = ξ ′ − h′ + Li = b′j

and Fbj = a′j for 0 ≤ j ≤ r. It is clear that

F�` = −q−`
′
et1
�`′ ,

and

F�γ = z∂ξ ′

r

∏
j=0

z∂a′j
− qγ′+`′et2

= z∂ξ ′�`′ + q`
′
e−t1
�γ′ .
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To handle the base directions, we need to lift the QDE on S to
X. This requires to lift the Mori cone first.

Lemma (I-minimal lift = generic lift)
(i) Given a primitive βS ∈ NE(S), β ∈ NE(X) if and only if

d ≥ −µ and d2 ≥ −ν,

where

µ = max
i
{βS.Li}, µ′ = max

i
{βS.L′i}, ν = max{µ + µ′, 0}.

(ii) For general βS, these numerical condition defines

NEI(X) ⊂ NE(X).

The minimal one βI
S is called the I-minimal lift.

Observation: IX/S
β is non-trivial only if β ∈ NEI(X).
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Definition (Operator Dβ(z))
For any one cycle β ∈ A1(X), we define for 0 ≤ i ≤ r,

ni(β) := −β.(h + Li),
n′i(β) := −β.(ξ − h + L′i), n′r+1(β) := −β.ξ,

It is admissible if these are all ≥ 0. Then Dβ(z) := DA
β DB

βDC
β :

DA
β =

r

∏
i=0

ni(β)−1

∏
m=0

(z∂h+Li −mz),

DB
β =

r

∏
i=0

n′i(β)−1

∏
m=0

(z∂ξ−h+L′i
−mz), DC

β =
n′r+1(β)−1

∏
m=0

(z∂ξ −mz).

Key point: For β̄ ∈ NE(S), the I-minimal lift β̄I is admissible.
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Theorem (Quantum Leray–Hirsch)

(1) (I-Lifting) The QDE on QH(S) can be lifted to H(X) as

z∂i z∂jI = ∑k,β̄∈NE(S) qβ̄I
e(D.β̄I)C̄k

ij,β̄(t̄) z∂kDβ̄I(z)I,

with Dβ̄I(z) unique modulo the Picard–Fuchs system.
(2) Together with the Picard–Fuchs �` and �γ, they determine a

first order matrix system under the naive quantization basis:

z∂a(∂
zeI) = (∂zeI)Ca(z, q), where ta = t1, t2 or t̄i.

(3) For β̄ ∈ NE(S), its coefficients in Ca are polynomial in qγet2
,

q`et1
and f(q`et1

), and formal in t̄. Here

f(q) := q/(1− (−1)r+1q)

satisfies f(q) + f(q−1) = (−1)r. (Origin of functional eqn.)
(4) The system is F -invariant, though in general F β̄I 6= β̄I′ .
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Idea: (1) Write t̄ = ∑ t̄iT̄i and C̄k
ij(t̄, q̄) = ∑β̄∈NE(S) C̄k

ij,β̄(t̄) qβ̄, then

z∂iz∂jJS
β̄
= ∑

k,β̄1∈NE(S)

C̄k
ij,β̄1

z∂kJS
β̄−β̄1

.

Since i, j are in the base H(S) directions,

z∂iz∂jI = ∑
β

qβe
D
z +(D.β)IX/S

β z∂iz∂jJS
β̄

= ∑
k,β̄1

qβ̄I
1eD.β̄I

1C̄k
ij,β̄1

z∂k ∑
β

qβ−β̄I
1e

D
z +D.(β−β̄I

1)IX/S
β JS

β̄−β̄1
.

The key is to rewrite IX/S
β · · · as

Dβ̄I(z)(IX/S
β−β̄I

1
· · · ).

(2), (3) are by induction on βS. (4) follows from the equivalence
of the Picard–Fuchs ideals.
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Ideas involved in the proof of (2) and (3).

The Picard–Fuchs system generated by �` and �γ is a
perturbation of the Picard–Fuchs (hypergeometric) system
associated to the (toric) fiber by operators in base divisors.

The fiberwise toric case is a GKZ system, which by the theorem
of Gelfand–Kapranov–Zelevinsky is a holonomic system of
rank (r + 1)(r + 2), the dimension of cohomology space of a
fiber. It is also known that the GKZ system admits a Gröbner
basis reduction to the holonomic system.

We apply this result in the following manner: we would like to
construct a D module with basis

∂ze I, e ∈ Λ+.

We apply z∂t1 , z∂t2 and first order operators z∂i’s to this selected
basis.
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Notice that

�` = (1− (−1)r+1q`et1
)(z∂t1)r+1 + · · · ,

�γ = (z∂t2)r+2 + · · · .

This is where f appears. The Gröbner basis reduction allows
one to reduce the differentiation order in z∂t1 and z∂t2 to smaller
one ∂ze I’s with e ∈ Λ+. In the process higher order
differentiation in z∂i’s will be introduced.

Using (1), the I-lifting, the differentiation in the base direction
with order > 1 can be reduced to one by introducing more
terms with strictly larger effective classes in NE(S).

A careful induction will conclude the proof. In fact in the
current special case coming from ordinary flops, neither the
GKZ theorem nor the Gröbner basis were needed.

All the analytic continuations are reduced to the one on f. �

24 / 39



Finally we will construct a gauge transformation B to eliminate
all the z dependence of Ca in the F -invariant system

z∂a(∂
zeI) = (∂zeI)Ca, , ta = t1, t2 or t̄i. (1)

B is nothing more than the Birkhoff factorization matrix

∂zeI(t̂; z, z−1) = (z∇J)(τ; z−1)B(τ; z) (2)

valid at the generalized mirror point τ = τ(t̂).
Substituting (2) into (1), we get

z∂a(∇J)B + z(∇J)∂aB = (∇J)BCa,

hence

z∂a(∇J) = (∇J)(−z∂aB + BCa)B−1 =: (∇J)C̃a. (3)

We must notice the subtlety in the meaning of C̃a(t̂).

25 / 39



Let τ = ∑ τµTµ. Write the QDE as

z∂µ(∇J)(τ) = (∇J)(τ)C̃µ(τ),

then
z∂a(∇J) = ∑

µ

∂τµ

∂ta z∂µ(∇J) = (∇J)∑
µ

C̃µ
∂τµ

∂ta ,

hence
C̃a(t̂) ≡∑

µ

C̃µ(τ(t̂))
∂τµ

∂ta (t̂). (4)

In particular, C̃a is independent of z. And (3) is equivalent to

C̃a = B0Ca;0B−1
0 (5)

(B−1
0 := (B−1)0, coefficient matrix of z0) and the cancellation

equation
z∂aB = BCa − B0Ca;0B−1

0 B. (6)
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Analyze B = B(z) by induction on w := (β̄, d2) ∈ W. The initial
condition is the extremal ray case Bw=(0,0) = Id.
Suppose that Bw′ satisfies FBw′ = B′w′ for all w′ < w. Then

z∂aBw = ∑
w1+w2=w

Bw1Ca;w2 − ∑
w1+w2+w3+w4=w

Bw1,0Ca;w2,0B−1
w3,0Bw4 .

Write Bw = ∑n(w)
j=0 Bw,j zj. Then in the RHS all the B terms have

strictly smaller degree than w except

BwCa;(0,0) − Ca;(0,0)Bw + Bw,0Ca;(0,0) − Ca;(0,0)B
−1
w,0

which has maximal z degree ≤ n(w). By descending induction
on j, the z degree, we get

∂a(FBw,j − B′w,j) = 0.

The functions involved are all formal in t̄ and analytic in t1, t2,
and without constant term (Bw=(0,0) = Id). Hence FBw,j = B′w,j.
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We have proved that for any t̂ = t̄ + D ∈ H(S)⊕Ch⊕Cξ,

FB(τ(t̂)) ∼= B′(τ′(t̂)),

hence the F -invariance of C̃a(t̂) = B0Ca;0B−1
0 : Explicitly

C̃κ
aν = ∑

n≥0, µ

qβ

n!
∂τµ(t̂)

∂ta 〈Tµ, Tν, Tκ, τ(t̂)n〉β.

The case Tν = 1 leads to non-trivial invariants only for 3-point
classical invariant (n = 0) and β = 0, and also µ = κ. Since κ is
arbitrary, we have thus proved the F -invariance of ∂aτ. Then

∂a(F τ − τ′) = F ∂aτ − ∂aτ′ = 0.

Again since τ(t̂) = t̂ for (β̄, d2) = (0, 0), this proves

F τ = τ′,

which is an analytic continuation in the q` variable. �
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Conclusion of proof of Q-inv

Since
F τ ∼= τ′, FB(τ) ∼= B′(τ′),

we get
F J(τ(t̂)).ξ ∼= J′(τ′(F t̂)).ξ ′

and then by Mori cone induction it is not hard to get

F J(t̂).ξ ∼= J′(t̂).ξ ′.

This simply means

F 〈t̂n, ψkıa〉X ∼= 〈F t̂n, ψkξF a〉X′ .

The general case of f -special type invariants with more
descendents and with general insertions than t̂ then follows by
the divisorial reconstruction. QED
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Example I:
Hirzebruch surface X = Σ−1. This is the P1 bundle over S = P1

associated to V = O ⊕O(1).

Write H(S) = H(P1) = C[p]/(p2).

H = H(X) = H(S)[h]/〈h(h + p)〉

has dimension N = 4. Consider the basis {Ti | 1 ≤ i ≤ 4} by

1, h, p, hp.

Denote q = q`et, q̄ = qbet̄, where b = [S] ∼= [P1]. Then

�` = (z∂h)(z∂h+p)− q.

It leads to the reduction procedure in z∂h:

(z∂h)
2 = q− (z∂h)(z∂p). (7)
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Since H(S) = C1⊕Cp, the small and big quantum rings
coincide. It is easy to compute its QDE:

z∂p(z∂1, z∂p) = (z∂1, z∂p)

(
0 q̄
1 0

)
.

Since bI = b− `, we get DbI(z) = z∂h. We get the lifting of the
QDE to be

(z∂p)
2 = q̄q−1 z∂h. (8)

By (7) and (8), we calculate the matrix Cta of the action of
z∂ta = z∂h or z∂p on T̂i as z∂taT̂j = ∑k Ck

taj(z)T̂k modulo IX. Then

Ch =


0 q 0 −q̄
1 0 0 zq̄q−1

0 0 0 q
0 −1 1 q̄q−1

 ,
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Cp =


0 0 0 q̄
0 0 q̄q−1 −zq̄q−1

1 0 0 0
0 1 0 −q̄q−1

 .

We solve B from Ch and Cp by the recursive equation (27):
B2,4 = −q̄q−1,

B =


1 0 0 0
0 1 0 −q̄q−1

0 0 1 0
0 0 0 1


The first column implies that in J = PI, P(z) = 1 and τ(t̂) = t̂.
The full matrix system requires basis in all directions which
uses the full matrix B and non-trivial BF is required.

B = I4 − q̄q−1e2,4, B−1 = I4 + q̄q−1e2,4.
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From this we get C̃ta = B0Cta;0B−1
0 :

C̃h =


0 q 0 0
1 q̄q−1 −q̄q−1 0
0 0 0 q
0 −1 1 0

 , C̃p =


0 0 0 q̄
0 −q̄q−1 q̄q−1 0
1 0 0 0
0 1 0 0

 .

By setting t̂ = 0, we get q = q` and q̄ = qb, and we can read out
the 3-point invariants. E.g. for the entries at (2, 3):

C̃3
h2 = 〈T2, T2, T3〉 = 〈h, h, p∗〉 = δh〈h, h〉 = −q−`qb,

C̃3
p2 = 〈T3, T2, T3〉 = 〈p, h, p∗〉 = δp〈h, h〉 = q−`qb.

This coincides with more classical methods.
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Example II:
(Non-trivial BF/GMT.) A P1 flop f : X 99K X′ with local data
(S, F, F′) = (P1, O ⊕O , O ⊕O(1)).

Write H(S) = C[p]/(p2) with Chern polynomials

fF(h) = h2, fN⊕O(ξ) = ξ(ξ − h)(ξ − h + p).

Then H = H(X) = H(S)[h, ξ]/(fF, fN⊕O) has dimension N = 12
with basis {Ti | 0 ≤ i ≤ 11} being

1, h, ξ, p, hξ, hp, ξ2, ξp, hξ2, hξp, ξ2p, hξ2p.

Denote by q1 = q`et1
, q2 = qγet2

, q̄ = qbet3
, where b = [S] ∼= [P1],

and f = f(q1). The Picard-Fuchs operators are

�` = (z∂h)
2 − q1z∂ξ−h z∂ξ−h+p,

�γ = z∂ξ z∂ξ−h z∂ξ−h+p − q2.
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They lead to a Grobner basis:

(z∂h)
2 = f(z∂ξ)

2 − f z∂p z∂h + f z∂p z∂ξ − 2f z∂h z∂ξ (9)

(z∂ξ)
3 = q2(1− q1)− z∂p(z∂ξ)

2 + 2z∂h(z∂ξ)
2 + z∂p z∂h z∂ξ . (10)

H(S) = C1⊕Cp has only small parameters with QDE

z∂p(z∂1, z∂p) = (z∂1, z∂p)

(
0 q̄
1 0

)
.

The real difference from the previous ((0, 0), (0,−1)) case starts
with the lifting of this QDE. Now bI = b− γ, we get
Db = z∂ξ z∂ξ−h, and the lifting becomes

(z∂p)
2 = q̄q−1

2 z∂ξ z∂ξ−h. (11)
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By (9), (10) and (11), we calculate Ca in z∂aT̂j = ∑k Ck
aj(z)T̂k

modulo IX. Let q∗ = q̄q−1
2 be the chosen admissible lift and set

g = f(q∗), A = q2 − q1q2, S = q2 + q1q2. We get

Ch =



q1q2 f q2q∗ zq1q2
1

q1q2
q1q2 zq1q2

−2f 1 zf q∗

−f 1
f −zf q∗

f q1q2
1

f(q∗ − 2) 1
f(1− q∗)

1



,
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Cξ =



A zq1q2 zAg z2q1q2g
A zAg

1 2q1q2 −q2g zq1q2g
q1q2 A(1 + g) zq1q2(1 + 2g)

1 z2g −q2q∗(1 + g)
A(1 + g)

1 −z2g
1 q1q2(2 + g)

1 2 zg −z2g
1 1 2zg
−1 1 −2zg

−1 1 2 + g −2zg



,
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and Cp =

−q1q2q∗ Aq∗ zq1q2q∗ z(q1q2q∗ −Ag) −z2q1q2g
Aq∗ Aq∗ −zAg

q1q2q∗ (S− q1q2q∗)g −zq1q2g
1 q1q2q∗ q1q2q∗ −Ag −2zq1q2g

−q∗ zq∗ −z2g (A + q1q2q∗)g
1 −Ag

q∗ −zq∗ z2g q1q2q∗

1 −q1q2g
q∗ q∗ −zq∗ z(q∗ − 2)g z2g

1 q∗ −2zg
1 −q∗ 2zg

1 −q∗ (q∗ − 2)g 2zg



.
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The appearance of f and g demonstrates the analytic
dependence on the parameters and explains the validity of
analytic continuations.
Now we may solve B inductively on w = (β̄, d2). The formulas
are complicate and the details are thus omitted.

Theorem (LLQW-III 2013, CJM 2016)
The split assumption can be removed. The Quantum Leray–Hirsch
Theorem for projective bundles and the analytic continuations of QH
for ordinary flops hold without the splitting assumption on bundles.

END
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